1-1

2乗に比例する関数

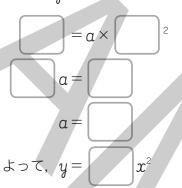
❷ 例題

yはxの2乗に比例し、x=2のとき、y=-1となります。

- (1) yをxの式で表しましょう。
- (2) x = -4のときのyの値を求めましょう。

yがxの2乗に比例する関数の式… $y = \alpha x^2$

(1) 求める式を $y = \alpha x^2$ として, x = 2, y = -1を代入すると,



(2) y = x^2 にx = を代入して,

$$y = \left(\right)^{2}$$

$$= \left(\right)^{2}$$

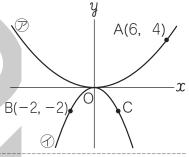
፟ ❷ 例 題

2

右の図で、 \bigcirc は関数 $y=ax^2$ のグラフ、

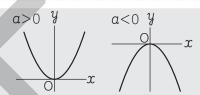
①は関数 $y = bx^2$ のグラフです。

- (1) a, bの値をそれぞれ求めましょう。
- (2) ②上にあって、Bとy座標が等しい点Cのx座標を求めましょう。



 $y = \alpha x^2$ のグラフ(放物線)の特徴

- ① 原点を通り、 y軸について対称
- ② $\alpha > 0 \Rightarrow$ 上に開いた形, $\alpha < 0 \Rightarrow$ 下に開いた形
- ③ αの絶対値が大きいほど、開き具合は小さい



(1) aの値… $y = ax^2$ にx = , y = を代入して, a = Aのx座標% Aのy座標%

bの値… $y = bx^2$ にx = 。 を代入して,b =

(2) ④の式y = x^2 にy = を代入して、 = x^2 これを解くと、 $x = \pm$ x > 0より、Cのx座標は

%CはBとy軸について対称な点になっていることを確かめましょう。

グ学習の内容

yがxの2乗に比例する関数 $(y=ax^2)$ の基本事項を学習します。

関数 $y = \alpha x^2$ のグラフの特徴を確かめて,問題で利用できるようにしておきましょう。

練習しよう

- \square (1) yはxの2乗に比例し、x=3のとき、y=18となります。

 - \square ① yをxの式で表しましょう。 \square ② x=-1のときのyの値を求めましょう。

)

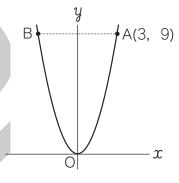
- \square (2) yはxの2乗に比例し、x=-6のとき、y=12となります。
 - \square ① yをxの式で表しましょう。 \Diamond □② y=3となるxの値をすべて求めましょう。

沿 HINT (2)② xの値は正と負の2種類があることに気をつけよう。

練習しよう

- \Box (1) 右の図で、関数 $y=ax^2$ のグラフがA(3, 9)を通ってい ます。
 - □① aの値を求めましょう。

 \square ② このグラフ上にあって、 $A \succeq y$ 座標が等しい点を $B \succeq U$ ます。Bの座標を求めましょう。



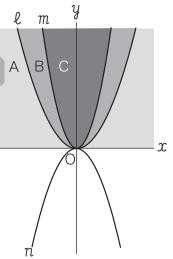
☆□(2) 右の図のℓ, m, nは, 次の3つの関数⑦~⑤のグラフの うちのどれかを表しています。

- \Box ① nのグラフの式を選びましょう。

 \square ② ℓ , mのグラフの式をそれぞれ選びましょう。

l () m (

口③ $y = \frac{1}{2}x^2$ のグラフをpとします。pは,図のA,B,C のうちどこを通りますか。



^{\circ}HINT (2)③ $y = \alpha x^2$ の α の絶対値を利用して、グラフの開き具合をくらべよう。

1 -2

2乗に比例する関数の値の変化

❷ 例題

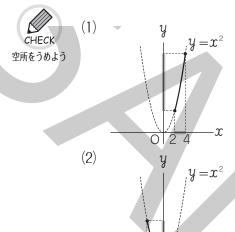
関数 $y=x^2$ のxの変域が次の(1), (2)のようであるとき、yの変域を求めましょう。

3

$$(1) \quad \overset{\circ}{2} \leq x \leq 4$$

$$(2) \quad -3 \le x \le 1$$

関数 $y = \alpha x^2$ の変域…グラフの形をイメージしながら考える。



$$y$$
が最小となるのは、 $x=$ のときで、 $y=$

$$y$$
が最大となるのは、 $x =$ のときで、 $y =$

よって、
$$y$$
の変域は、 $\bigg| \leq y \leq \bigg|$

$$y$$
が最小となるのは、 $x = \begin{bmatrix} & & \\ & & \end{bmatrix}$ のときで、 $y = \begin{bmatrix} & & \\ & & \end{bmatrix}$

$$y$$
が最大となるのは, $x=igg($ のときで, $y=igg($

よって,
$$y$$
の変域は, $\leq y \leq$

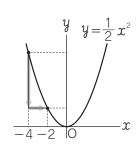
& 例題

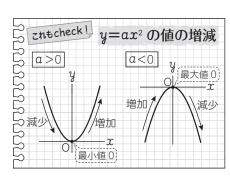
4

関数 $y=\frac{1}{2}x^2$ で、xの値が-4から-2まで増加するときの変化の割合を求めましょう。

変化の割合= $\frac{y$ の増加量xの増加量

yの増加量=変化の割合imes xの増加量



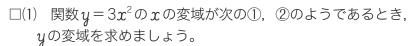


$$x = -4$$
のとき、 $y = \frac{1}{2} \times ($ $)^2 =$ $x = -2$ のとき、 $y = \frac{1}{2} \times ($ $)^2 =$

1	224	ঘঘ	$\boldsymbol{\sigma}$	4	
	7	省	U)	内	谷

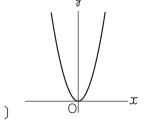
2乗に比例する関数の「変域」と「変化の割合」について学習します。 グラフをかいたり、グラフの形をイメージしたりしながら考えてみましょう。

Q 3	練習しよう
-----	-------



$$\Box \bigcirc \bigcirc -2 \le x \le -1$$

$$\Box \bigcirc \bigcirc -2 \le x \le -1 \qquad \qquad \Box \bigcirc -\frac{1}{3} \le x \le 1$$



 \square (2) 関数 $y = -x^2$ の x の 変域が $-4 \le x \le 5$ であるとき、 y の 変域を求めましょう。

$$☆$$
□(3) 関数 $y = ax^2$ について、 x の変域が $-3 \le x \le 1$ のときの y の変域は $0 \le y \le 18$ です。

 \Box ① yが最小となるときとyが最大となるときのxの値をそれぞれ求めましょう。

 \square ② $y = ax^2 \circ a$ の値を求めましょう。

治HINT (3)② 「yが最小 $\Rightarrow y = 0$ 」「yが最大 $\Rightarrow y = 18$ 」を利用しよう。

練習しよう。

 \square (1) 関数 $y=2x^2$ について、x の値が次の①~④のように増加するときの変化の割合を求めま しょう。

□③ -5から3まで増加

☆□(2) 関数 $y = \alpha x^2$ について、xの値が3から6まで増加するときの変化の割合は3になります。 \square ① x=3のときとx=6のときのyの値を、それぞれ α を使った式で表しましょう。

$$x=3$$
 のとき () $x=6$ のとき (

 \square ② $y = ax^2$ のaの値を求めましょう。